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The analytical expressions obtained for particular solutions of the lnves- 
tlgated problem are usually very complicated. Hence the Importance of the 
kinematic interpretation of the solutions obtained [I]. 

To realize the well-bown representation of rolling without slipping of 
a cone on another stationary cone It is necessary to know the directrlx of 
the stationary cone. In a few particular cases the equation of this line 
is known. Polnsot [2] obtained Its equation for the Euler solUtiOn, and 
Darboux [ 33 for the Lagrange solution. 

in this paper the required equation is found for the general case of a 
body with a fixed point. As an example we have selected the solution of 
Chaplygln [2] because It is easy to demonstrate with It all the advantages 
of knowlng the equation of the dlrectrlx, and also because the remaining 
relationships for this solution have been found by Chaplygln. 

1, The moving hodograph of the angular velocity is described by Equa- 

tions 
oi = O$ (0) (i = 1, 2, 3) (f.4) 

giving the components of 

moving with the body and 

the case of a body under 

relations y = y(x) and 

Formulas 

the angular velocity in the coordinate system 

depending on the variable u . For example, in 

action of gravitational forces we can find the 

il = z(~) from Equations (1.13) in C51, and then 

01(x) = a.z + b,y (4 + b,z (4 

0-a (4 = a,!/ (4 + 4x, 03 (4 = a32 (z) + b,z 

given in the same reference, determine the moving hodograph. The relation 

between x and t is obtained by quadrature from (1.9) as shown in [5]. 

Knowing (1.1) we can show that there is a vector depending on u which 

preserves a fixed direction with respect to a Stationary reference System. 

In the case of a heavy rigid body thls Is the vector y shown in [53 as a 
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function of x . In the problem of Zhukovskll [61 on the Inertial moclon 

of a body having its fixed point In P liquid filled cavity this Is the angu- 
lar momentum vector of the system. In the prcblem of the motion of a body 

In the Newtonian force field [7] this Is the vector alsng the line joining 

the fixed point with the center of attraction. 

bet the LUllt vector along this fixed direction be v and its components 

along the axes moving with the body be vi= v,(c). We make the axis c of 

the fixed cylindrical coordinate system, to coincide wlth this unit vectolb. 

The axial and the radlal components of the angular velocity are determlned 

from Formulas 
w< (0) = 0 (a)*v (a), 09 (4 = jv (4x0 (41 (1.2) 

The rateof chaneeofthe unit vector v with espect to the body Is given 

by Equation 
dvldt = vxo (1.3) 

hence 

op = Idv/dtI (1.4) 

To determine the stationary hodograph of the angular veloc:ty It Is neces- 

sary as a supplement to (1.2) to show the dependence on o of the third 

cylindrical coordinate, which Is the angle Q . We shall derive this depen- 

dence. 

The tip of the vector IJJ moves both on the moving and on the stationary 

hodograph with the velocity du/dt whose projection on the normal to the 

plane containing the vectors VI and w equals 

vxo de, 

Jvxol dt 

In the cyilndrlcal coordinates the circular velocity component Is given 

by Formula o,~u/ dt, hence 
dz vxo do 

o~z=~2i (1.5) 

or, In terms of the components and by (1.2) 

@ 2 .&= = Z(Z) re';;) E;) 
' d5 (1.f-9 

doI / ds doa / ds doa / ds 

By using (1.5), (1.3) and (1.4) we can Introduce a compact notation for 

Equation (1.6) da dv . do 
-=dv dt 

By (1.2) and (1.6) the stationary hodograph of the angular velocity Is 

fully determined. On this curve rolls without slipping the curve which 

moves the body and Is given by (1.1). We have In (1.2) a parametric equa- 

tion of a curve In the O,AO; plane. This curve, ln the fixed space ~~~,,(ei, 

can be Interpreted as a meridian of a surface of revoiutlon. In cases where 

this Is sufficiently straight, the motion of the body can be represented as 
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rolling without slipping of the curve connected with the body (1.1) on the 

fixed surface of revolution. To determine the line traced by the moving 
hodograph on this surface we must use Equation (1.6). 

In Euler's solution this surface of revolution Is a plane and (1.6) is 
the equatjon of the herpolhode. In Lagrange’s solution this surface of revo- 

lutlon Is a sphere and (1.6) is the equatlon of Darboux [ 33 . 

2. Equations 

dT1 - .~ 
dt rya - 673 (123), (ABC), (IsQr) dp 

-4 dt = (B - C) qr f e2Y3 - e3T2, 

(e12 + ea2+ e3" = 1, TI' -t T22 + 73 
2 -- r2) 
- 

under conditions 
e, = e3 = 0, 9 (2B - A) (2C - -4) = 4BC (2.1) 

‘Is(i7+ v/73)>2B/A>3>5C/A>5i,,(1 + v/73) (2.2) 

have the particular solution which has been found by Chaplygln 

(2B - A) (B -C) .+‘q2 = (C - A)2 p - 3 (3A - BC) splia 

(2C - A) (B - C) A-l? = (A - B) p2 + 3 (3A - 2B) sp’h 

(2B - A) (2C - A) rl = A (B - A) (C - A) p2 + 3/‘z A (3A2 - 4BC) sp”: 

(2C - A) y2 = q [(B - A) (C - A) p + C (3A - 2B) SP-‘~] 

(2B - A) r3 = r [(B - A) (C - A) p f B (3‘1 - 2C) sp-“‘1 
where 

sS= 
4(2B - A)2 (2C - A)2 r’ 

9A3 (2B + ZC - 3A).(3.-l-2B) (3A - 2C) <o 

Chaplygln has also shown the equations of the meridian of the surface of 
revolution 

(ZM - A) (2C - ,4) (p* -+ q" -+- r‘3) = 4 (B -A) (C-A) p” $ 12s (2.1 - B - C) Ap% 

(2B - -1) (2C - A) (pTlm:- qTz -t- ry,) -= 6As (B - 11) (C - *A) p”” + 

+ 3s2 (3‘1 - 2B) (3A - 2C) AP”,~ 

We shall write the solution of Chaplygin In a form convenient for the sub- 
sequent analysis. 

Satisfying (2.1) we set 

B = 3,‘18 .I (3c _t 1) / c, C :z 3 113 ‘4 (3 + c) 

and by (2.5) we have 

1,'3 (1/C - i,<c<'L (2.3) 

We shall divide the components of the angular velocity by (- 188)2 
Introduce the unit vector vi= VA and rewrite the solution of Chapligln 
as follows: 

P z u I/a. q-=q* J/u(a*” - a?), r= r*1/u(Ue2-Ui) 
(2.4) 

2c 
2 (7 - 3c) ';A .2 (3 - 7c) "1 

Q* _= 3 (3 :- c) (1 - $) ’ 3 (1 + 3c) (1 - $) > 
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(7 -- 3c) (3 - 7c))/:j 
( 

9 - 34c -/- 9c2 
--.-.-~_ _ ____ 0 --___ 

y1 Lz ‘(I - c) 1/(5-c) (1 - 5c) (7 - 3c) (3 - 7c) - a2 i 

(3 - 7c) 
v2 -: 7 

( 

(3 + c) (7 - 3c)3 
t(1 - c) z (0*2 - d))“2(g+ a*2 - 5:) 2 (5 - c) (1 - 5c) (1 -c ) (2.5) 

7 - 3c ‘I2 1 + 3c 
W= -m 

(1 f 3c) (3 - 7c)3 
q(5 - jjc) (1 - c2) (s*2 - 0”) ) i ___ a*2 -1. (~2 

3-7c 1 

(02 _m-w*21J g- +~-;ly3+_yc) -- ($] ( 
O*” =-: 

(3 - 7c) (7 - 3c) 
(3 + c) (1 -+ 3c) 

(2.6) 

WC ~-7 co* J/G (a2 - a*sa*y, (7 - 3c) (3 - 76) 

o*- F(1 - c) 1/3 (5 - c) (1 - 5c) 

(2.7) 

The constants marked by asterisks are positive. 

The variable o Is determined from Equation 

2 = Jf a ((T,~ - a”) (Use - a2), ( 5 = f (- 18s)“w,t ) (2.8) 

The radial component of the angular velocity is determined from (2.6) 

where 

(+ =1: Jf($ - UC2 = CO* 1/a ((~~2 + ~2) (aha - ~2)' (2.9) 

2 
(J3 

= 4 (1 - c) R (c) + (3 - 22c + 3c2) (1 - 5c) (5 -c) 
(3 -t c) (1 + 3c) (7 - 3c) (3 - 7c) 

(2.10) 
2 _ 4 (1 - c) R (c) - (3 - 22c + 3~2) (1 - 5c) (5 - c) 

04 - . (3 + c) (1 .+ 3c) (7 - 3c) (3 - 7c) 

R (c) = 1/2 (1 - 5c) (5 - c) (9 - 42~ + 34~2 - 426’ +- Yc*) 

Substltutlw (2.4), (2.51, (2.9) intO (1.6) we have 

cki 
- -_ iv (fh2 - ay (a22 - a”) 

(/Cl (a32 Am a2) (ua2 - a’) 1/(a*” - a”) ((5*” - 02) (2.11) 

Here 
fV = 2a*a* Jf3 (3 + c) (1 + 3c) 

a _ 9 - 34c + 9c” + 2 (I,- c) f/Y - 34c i 9c” 
aI” - 

(7 - 3c) (3 - 7c) (2.12 

2 _ 9 - 34c + w - 
a.J -- 

2 (1 - c) K9 - 34c +-9;s 

(7 - 3c) (3 - 7c) 

Let us write dcwn the inequalities resulting from (2.3), (2.7), (2.12) 
and (2.10) 

(J* <a* <I, 0 < (J2 <o*< 01, a*<G4 (2.13) 

The quantities (2.4) are real, therefore when the body moves the variable 
o is bounded 



O~so~cr, (2A4) 

%nd, as Shown by (2.81, it passes. from ozxe bozz&aW to aisQtMW ti a t’lnite 
fnterval of time The second derivative a’u/&P at u = 0 and Q - Q+ 
does not vanish,‘consequently the variable Q cannot reinain conrtant at 
a = 0 OP at 0 = u* , Thus, without any loss of genbrallty we can assume 
that initially u = 0 . 

3. The curve (2.4) connected with the body constitutea at the same tfme 
the mavsig hodo~~~~ of the az%@tfar vefotrity and also the ixarve Of XntePsec* 
tkn of a;he cylLndrica1 surfacen 
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Fig.3 shows this part If the meridian (2.7) and (2.9) of the surface of 
revolutlon which corresponds to the 
increment of the variable c from the 
Initial zero value to the value a* . 

The symmetric Image of this Jlne 
about the point 0 is the otner part 

Fif. 3 FJg. 4 

of the meridian which corresponds to the second half period of the motion of 
the body. 

From (2.9), (2.11) we obtain the projection of the stationary hodograph 
on the horizontal plane (Flg.4). We have 

Besides 

o<,+:i:: _._ "A2 _ - :! (I - c) (5 - c) (I - 5c) ~- 
(7 _._ SC) (:: _. 7(.) I:! (1 __ c) _,_ y-y _ sac r-7,,, > O (4.4) 

and from (4.4) 

Fig. 5 shows one loop of the stationary hodograph, obtained by placing 
the projection shown on Fig.4 on the surface of revolution with Its meridian 

Flg. 5 

as shown In Flg.3. Fig. a shows what happens at the initial value 0 = 0. 

At this Instant, by (2.5 = 0, consequently the up-axis of the body 
containing the center of g&lty Is horizontal. When 0 increases from 0 

to a* the moving hodograph passes to the position shown in Flg.5b . In 
this position = 0 and the or-axis becomes horizontal. When o decreases 

from u+ to 0 ""the m&lng hodograph passes to the position shown in Flg.5c. 
The Op-axis Is again horizontal. 

In the following motion of the body the point of tangency of the curves 
shown In Fig.5 moves along these curves in the opposite direction. From the 

position shown in Flg.5c through the position 5b to the posltlon 5a . The 
tip of the vector UI describes curves, both In the body and In the space 
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which are symmetric to those shown In Fig.5 about the fixed point Q . At 
the end of this stage of the motion the position 5a is reached again after 
which the process repeats itself. 
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