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The analytical expressions obtained for particular solutions of the lnves-
tigated problem are usually very complicated. Hence the importance of the
kinematic interpretation of the solutions obtained [1].

To realize the well-known representation of rolling without slipping of
a cone on another stationary cone 1t 1s necessary to know the directrix of
the stationary cone. In a few particular cases the equation of thls line
is known. Poinsot [2] obtained 1ts equation for the Buler sclution, and
Darboux [ 3] for the Lagrange solution.

in this paper the required equation is found for the general cé&se of a
body with a fixed point. As an example we have selected the solution of
Chaplygin [[2] because it is easy to demonstrate with 1t all the advantages
of knowing the equation of the directrix, and also because the remaining
relationships for this solution have been found by Chaplygin,

1. The moving hodograph of the angular velocity is described by Equa-
tions

o = s (6) (i=1,23) .1
giving the components of the angular velocity in the coordinate system
moving with the body and depending on the variable ¢ . For example, in
the case of a body under action of gravitational forces we can find the
relations y = y(x) and z = 2(x) from Equations (1.13) in [5], and then
Formulas

@, (z) = az + by (2) + byz (2)
o, (2) = ayy (7) + bz, w3 (2) = 4,2 (2) + bz

given in the same reference, determine the moving hodograph. The relation
between x and ¢ 1s obtained by quadrature from {1.9} as shown in [5].

Knowing (1.1) we can show that there is a vector depending on ¢ which
preserves a fixed direction with respect to a stationary reference system.
In the case of a heavy rigid body thils is the vector ¥y shown in [5] as a
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function of x . In the problem of Zhukovskii [6] on the inertial motion
of & body having 1ts fixed point in 2 liguid filled cavity thils is the angu-
lar momentum vector of the system. In the prcblem of the motion of a body
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Let the unit vector along this fixed direction be y and its components
along the axes moving with the body be v = v,(0¢). We make the axis (¢ of
the fixed cylindrical coordinate system, to coincide with thils unit vector.
The axial and the radial components of the angular velocity are determined
from Formulas

wg (5) = o (3)-¥ (a), wp (5) = | v (0) Xw (5} ] (1.2)

The rate of ¢change of the unit vector vy with espect to the body 1s glven

by Equation
dv/dt = vyXuw (1.3)

hence

wp = |dv/ dt] (1.4)

To determine the stationary hodograph of the angular velocity it is neces-
sary as a supplement to (1.2) to show the dependence on ¢ of the third
cylindrical coordinate, which is the angle o . We shall derive this depen-
dence.

The tip of the vector @ moves both on the moving and on the statlonary
hodograph with the velocity dw/bt whose proJjection on the normal to the
plane containing the vectors w and v equals

vXoe de
fvXo| dt

In the cyiindrical coordinates the circular velocity component is given
by Formula wpda/dt, hence

dy _ vXo do -
(DPE—-’———'—|V><‘DIE (10)
or, in terms of the components and by (1.2)
da V1 (5) vz (3) V3 (3)
0~ =l o0 (s  @s(9) (1.6}

dor/ds dws/ds dwog/ds

By using (1.5), (1.3) and (1.%) we can introduce a compact notatlon for

Equation (1.6) do dvede
dt = dveav

By (1.2) and (1.6) the stationary hodograph of the angular velocity is
fully determined. On this curve rolls without slipping the curve which
moves the body and 1s given by (1.1). We have in (1.2) a parametric equa-
tion of a curve in the W,y plane. This curve, in the fixed space Wr®,0y,
can be interpreted as a meridian of a surface of revolution. In cases where
this 1s sufficiently straight, the motion of the body can be represented as
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rolling without slipping of the curve connected with the body (1.1) on the
fixed surface of revolution. To determine the line traced by the moving
hodograph on this surface we must use Equation (1.6).

In Euler's solution this surface of revolution is a plane and (1.6) is
the equation of the herpolhode. In Lagrange's solution this surface of revo-
lution is a sphere and (1.6) is the equation of Darboux [3].

2, Equations

d
A d—}—)" (B —C) gr + ;73 — e3Yq, % =2 — 913 (123), (ABO), {par)

dat
(62 -+ e+ e = 1, 1% -+ 12 + 152 = I?)
under conditions
e = g = 0, 9 (2B — A) (2C — A) = 4BC @2.1)
Y (17 4+ VT3)>2B/A>3>5C [A> (1 + V1) (2.2)

have the particular solution which has been found by Chaplygin
(2B — A) (B —C)A1g2 = (C — A2 p — 3 (34 — 2C) sp™®
(2 —A) (B —C)A~'r* = (4 — B) p* + 3 (34 — 2B) sp”*
(2B — A) 2€ — Ay11 =A (B — A) (C — A) p* + 3/, A (34 — 4BC) sp™*
(2€ —A) 1, =g [(B—A)(€ —A) p+C(BA—2B)sp "]
(2B — A) Y13 =r (B —A) (€ —A) p+ B@BA—2C) sp /3]

where
&= 4(2B — A)2(2C — A2 T2

94° (2B + 2C — 3A4) (3.1—2B) (34 — 2C)

<0

Chaplygin has also shown the equations of the meridlan of the surface of
revolution

@B —A)QC —A) (P @+ r)=4(B—A)(C—A) p*+ 12521 —B —C) Ap™
(2B — 1) (2C — A) (p1y--q¥2 - Yy == 645 (B — A) (€ — ) p* +
+ 3s% (34 — 2B) (34 — 2C) Ap"

We shall write the solution of Chaplygin in a form convenient for the sub-
sequent analysis,

Satilsfying (2.1) we set
B=%1@c+1/c, €=3%340%0

and by {(2.5) we have .
VYT —8) < e s (2.3)

2
We shall divide the components of the angular velocity by (— 18s)*¢ ,
introduce the unit vector v,= y,/T and rewrlte the solution of Chaplygin
as follows:
p=dVo, g=q5 ¥ 0 (0¥ — 09, r=r,Vol(o’>—09
(2.4)

23 — 170
re = 2 (a T F 30 (1 — cﬂ))

N

‘ ( 2 (1 — 3¢) )

e N e L )
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oy e (1 =39 G ~ 19V 3 5( 9 — 34c - 92 2)
LT e S0Vl —59 (T—3)@3—1T9) "¢
BT (3 + ¢) (7T —3c)3 1 3+ .

AL TL (2 (O—o (1 —5)(1 —c?) (04 — 62)) <7——§c— Oy — 5.) 2:5)
N 7 — 3¢ (1 4 3¢) (3 —T¢)3 Yoy 1 + 3¢

Vst =71 «—c)<2(5——c)(1 — 5 (1= &) (5*2—"2)> ( 3 =7, **‘°2>

83 4o+ 3 1 . (3—79 (1 —39
VT T a0 BT %) T @ Tod T

‘ (2.6)
0 = 0% )/ g (0% — 0,50*), 0¥ = {0 —39 @ — T
s 20— V3G —ad— 50
o 1 — 5S¢ )1/2 . ( 5 — C‘]l/’: .
6= (3——76 ! 07 = \7 T3¢/ (=t
The constants marked by asterisks are positive.
The varlable ¢ 1s determined from Equation
do 1 2 i
I = V00,7 =) 0% — o9, (-: = 3 (— 1850, ) (2.8)

The radial component of the angular velocity 1s determined from (2.6)

0, = V0l — 0 = o* Voo + 0% (62 — 0% (2.9)
where
, Al —9R(@+ B —22+ 3¢ (1 —50) (50
05" = BFo(l+3)(7 —30@ — 170
(2.10)
\ 4(1 — o) R(c) — (3 —22 + 3¢ (1 —50) (5~
0y = BFo(+3007 —30@B—10
R)=V201 =5¢ (65— ) (9 — 42c + 34c? — 42¢% -+ 9¢Y)
Substituting (2.4), (2.5), (2.9) into (1.6) we have
@ N — (0 — & (02} — o) 2.11)

ds (02 + 02) (02 — 62) V (0% — 0%) (0,% — 09
Here -
N =20,0* V3@ + o 1+ 39

2:9_340—}—96‘—}—2(1.——c)]/‘9—340+902
(7T —3¢)(3—1T¢) {2.12;

Oy

022:9—340+902—2(1——c)]/,9—34c+‘972'
(7T—3) @B —179

Let us write down the inequalities resulting from (2.3), (2.7), (2.12)
and (2.10)
0, <0* <1, 0L 03<0, <0y, 0y <0y (2.13)

The quantities (2.4) are real, therefore when the body moves the variable
¢ 1s bounded
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0<o<<o, 2.18)

and, as shown by {2.8), 1t passes from one boundary to ahcther in & finite
interval of time. The second derivative g%¢/dr® at ¢ = O and ¢ = g,
does not vanish, consequently the variable ¢ cannot remain conatant at

¢ =0 orat o =0, . Thus, without any loss of generality we can assume
that initlally e = O .

3. The curve {2.4) sonnected with the body constitutes at the same time
the moving hodograph of the angular velocity and also the curve of intersec~
tion of the cylindrical surfaces

el B o) (- g = (5 — o) pt— (T — 30) p?

3, (1 4+ 3 (1 —e) 2= (4 —50) ptem (3 — T0) p?

The directrices of these cylinders are symmetric¢ with respect $o the coor-
dinate axes. An example of thelir forms
is shown in Fig.l. To sirplify the graph
in Fig.2 there are shown only two loops

1y @l the moving hodograph. The remalning
r(o) two are symmetric to thope shown about
the plane of symmetry por .

7 Let us investigate the motion of the
point ¥ which is the tip of the vector
@ on the curve {3.1).

Flg. 1 From {2.13) and {2.1%) follows that
the sign of Jfo®— ¢° does not charge and will be assumed positive. Then,
from (2.1%) and (2.8} follows that near the initisl values of ¢ the radi-
cals Sy and /o .7~ ¢° must have the same sign, which again will be assumed
positive. When g Increases
from the initial value ¢ = 0O
ge ¢ = 9y the poix;x’s . mﬁ?es
rom § ‘Lthrough ¥ - -
In N, the radlcal Jo - 5.5
changes sign, the component p
and the derivative go / a7
become negative. The varlable
¢ decreases from g, W Q,the
point ¥ moves from Ny through
¥" to ¢, where the radical
Je¢ changes sign, after which
r and become negabtlve amd
r gcsit%.vex and the tip of
the vector @ In the second
half-period moves on the
second loop a&s shown in Fig.2.

(3.1)

4, Let us consider the Fig. 2
curve {2.6) and {2.9} in the
B0y plane. We have

dor  {0,%0% — 507 ¥ (02 0% (o — o)

d(ﬂp =" 0320¢3 —3 (("&” —_ 0'42) o — Hot

=umv {3) &.1)

he curve begins from the point ¢ at the angle ¢ (0) <0, and at a=a,0%/5
it has a horizontal tangent at o = ouo¥< g, it intersects the dw -axis

at the angle ¥ = ¥ (o,0* >0. Let us note that @ T > 0 and ﬂp{(y*}< 0.

At certain value of ¢ , B8y @ = 84y : the denominator of the right term
of {4.1) vanishes and the tangent tc the curve {2.7) and {2.9) is vertical.
From the inequalities O {g,0%) >0 and ¥ {g,} <0 foliows

048* < yn < Ou 4.2)
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Fig.3 shows thils part 1f the meridian (2.7) and (2. of tr
revolution which corresponds to the ( ) (2.9) ne surface of

increment of the variable ¢ from the
initial zero value to the value g* .

The symmetrlic image of this line
about the polnt (0 1s the other part

Fif. 3 Fig. 4
of the meridian which corresponds to the second half period of the motion of
the body.

From (2.9), (2.11) we obtain the projection of the stationary hodograph
on the horizontal plane (Fig.h}. We have

o da e 0 (0.2 — 0?) (0,2 — 0?)
o » - [ 2o 2 . 2 2 = r 3 S (/ {%)
w, 05°04% — 3 (042 — 0,%) a2 — 5atl YV (o*2 —0?) (0,7 — 09 t.0)
Besides
U:‘.::(}-:Ei_‘ s 0.2-3 - 2‘ (1 - C) (5 e C) (l - 50) -

73003 —-T9 20 -0 - Vot g0 “Gd

and from (4.4)
Ty < Ogy

Fig. 5 shows one loop of the statlonary hodograph, cbtained by placing
the projection shown on Fig.4 on the surface of revolution with its meridian

Fig. 5

as shown in Fig.3. Fig.S5a shows what happens at the initial value ¢ = O.
At this instant, by (2.5) v, = O, consequently the (p-axis of the body
containing the center of gravity is horizontal. When ¢ 1increases from O
to o, the moving hodograph passes to the position shown in Fig.5b . 1In
this position y,= 0 , and the gr-axis becomes horizontal. When o decreases
from o, to O the moving hodograph passes to the position shown in Fig.5c.
The op-axls 1s again horlzontal.

In the following motion of the body the polnt of tangency of the curves
shown in Fig.5 moves along these curves in the opposite direction. From the
position shown in Fig.5c through the position 5b to the position 5a . The
tip of the vector w describes curves, both in the body and in the space
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which are symmetric to those shown in Pig.5 about the fixed point ¢ . At
the end of this stage of the motlon the position 5a 1s reached again after
which the process repeats itself.
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