KINEMATIC INTERPREIATION OF THE MOTION OF A BODY WITH A FIXED POINT

(KInEMATICheskor tatoikovanis dVizhenila tera, IMRUUBECHEAO NEPODVIスZNTIU TOCHKU)

PMM Vol.28, N 3, pp. 502-507
P.V.KHARLAMOV
(Novosibirsk)
(Received January 11, 1963)

The analytical expressions obtained for particular solutions of the investigated problem are usually very complicated. Hence the importance of the kinematic interpretation of the solutions obtained [1].

To realize the well-known representation of rolling without slipping of a cone on another stationary cone it is necessary to know the directrix of the stationary cone. In a few particular cases the equation of this line is known. Poinsot [2] obtained its equation for the Buler solution, and Darboux [3] for the Lagrange solution.

In this paper the required equation is found for the general case of a body with a fixed point. As an example we have selected the solution of Chaplygin [2] because it is easy to demonstrate with it all the advantages of knowing the equation of the directrix, and also because the remaining relationships for this solution have been found by Chaplygin.

1. The moving hodograph of the angular velocity is described by Equations

$$
\begin{equation*}
\omega_{i}=\omega_{i}(\sigma) \quad(i=1,2,3) \tag{1.1}
\end{equation*}
$$

giving the components of the angular velocity in the coordinate system moving with the body and depending on the variable o. For example, in the case of a body under action of gravitational forces we can find the relations $y=y(x)$ and $z=z(x)$ from Equations (1.13) in [5], and then Formulas

$$
\begin{gathered}
\omega_{1}(x)=a x+b_{1} y(x)+b_{2} z(x) \\
\omega_{2}(x)=a_{1} y(x)+b_{1} x, \quad \omega_{3}(x)=a_{2} z(x)+b_{2} x
\end{gathered}
$$

given in the same reference, determine the moving hodograph. The relation between x and t is obtained by quadrature from (1.9) as shown in [5].

Knowing (1.1) we can show that there is a vector depending on 0 which preserves a fixed direction with respect to a stationary reference system. In the case of a heavy rigid body this is the vector y shown in [5] as a
function of x. In the problem of Zhukovskii [6] on the inertial motion of a body having its fixed point in e. 11quid filled cavity this is the angular momentum vector of the system. In the problem of the motion of a body in the Newtonian force field [7] this is the vector along the line joining the fixed point with the center of attraction.

Let the unit vector along this fixed direction be v and its components along the axes moving with the body be $v_{1}=v_{1}(0)$. We make the axis 6 of the fixed cylindrical coordinate system, to coincide with this unit vector. The axial and the radial components of the angular velocity are determined from Formulas

$$
\begin{equation*}
\omega_{\zeta}(\sigma)=\omega(\sigma) \cdot \nu(\sigma), \quad \omega_{\rho}(\sigma)=|v(\sigma) \times \omega(\sigma)| \tag{1.2}
\end{equation*}
$$

The rate of change of the unit vector v with espect to the body is given by Equation

$$
\begin{equation*}
d \mathbf{y} / d t=v \times \omega \tag{1.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
\omega_{\rho}=|d \varphi / d t| \tag{1.4}
\end{equation*}
$$

To determine the stationary hodograph of the angular velocity it is necessary as a supplement to (1.2) to show the dependence on of the third cylindrical coordinate, which is the angle α. We shall derive this dependence.

The tip of the vector w moves both on the moving and on the stationary hodograph with the velocity $d w / d t$ whose projection on the normal to the plane containing the vectors ω and v equals

$$
\frac{\boldsymbol{v} \times \boldsymbol{\omega}}{|\boldsymbol{v} \times \boldsymbol{\omega}|} \frac{d \boldsymbol{\omega}}{d t}
$$

In the cyilndrical coordinates the circular velocity component is given by Formula $\omega_{p} d \alpha / d t$, hence

$$
\begin{equation*}
\omega_{\rho} \frac{d \alpha}{d t}=\frac{v \times \omega}{|v \times \omega|} \frac{d \omega}{d t} \tag{1.5}
\end{equation*}
$$

or, in terms of the components and by (1.2)

$$
\omega_{p}^{2} \frac{d \alpha}{d \sigma}=\left|\begin{array}{ccc}
v_{1}(\sigma) & v_{2}(\sigma) & v_{3}(\sigma) \tag{1.6}\\
\omega_{1}(\sigma) & \omega_{2}(\sigma) & \omega_{3}(\sigma) \\
d \omega_{1} / d \sigma & d \omega_{2} / d s & d \omega_{3} / d s
\end{array}\right|
$$

By using (1.5), (1.3) and (1.4) we can introduce a compact notation for Equation (1.6)

$$
\frac{d \alpha}{d t}=\frac{d v \cdot d \omega}{d v \cdot d v}
$$

By (1.2) and (1.6) the stationary hodograph of the angular velocity is fully determined. On this curve rolls without slipping the curve which moves the body and is given by (1.1). We have in (1.2) a parametric equation of a curve in the $\omega_{\rho} \omega_{\zeta}$ plane. This curve, in the fixed space $\omega_{\xi} \omega_{7} \omega_{\zeta}$, can be interpreted as a meridian of a surface of revolution. In cases where this is sufficiently straight, the motion of the body can be represented as
rolling without slipping of the curve connected with the body (1.1) on the fixed surface of revolution. To determine the line traced by the moving hodograph on this surface we must use Equation (1.6).

In Euler's solution this surface of revolution is a plane and (1.6) is the equation of the herpolhode. In Lagrange's solution this surface of revolution is a sphere and (1.6) is the equation of Darboux [3].

2. Equations

$$
\begin{gathered}
A \frac{d p}{d t}=(B-C) q r+e_{2} \Upsilon_{3}-e_{3} \Upsilon_{2}, \quad \frac{d \Upsilon_{1}}{d t}=r \gamma_{2}-q \gamma_{3} \\
\left(e_{1}^{2}+e_{2}^{2}+e_{3}^{2}=1, \Upsilon_{1}^{2}+\Upsilon_{2}^{2}+\Upsilon_{3}^{2}=\Gamma^{2}\right)
\end{gathered}
$$

under conditions

$$
\begin{align*}
& \text { 1ons } \tag{2.1}\\
& \qquad e_{2}=e_{3}=0, \quad 9(2 B-A)(2 C-A)=4 B C \tag{2.2}\\
& 1 / 8(17+\sqrt{73})>2 B / A>3>5 C / A>5^{5 / 16}(1+\sqrt{73})
\end{align*}
$$

have the particular solution which has been found by Chaplygin

$$
\begin{gathered}
(2 B-A)(B-C) A^{-1} q^{2}=(C-A)^{2} p-3(3 A-2 C) s p^{2 / 2} \\
(2 C-A)(B-C) A^{-1} r^{2}=(A-B) p^{2}+3(3 A-2 B) s p^{2 / 3} \\
(2 B-A)(2 C-A) \gamma_{1}=A(B-A)(C-A) p^{2}+3 / 2 A\left(3 A^{2}-4 B C\right) s p^{2 / 3} \\
(2 C-A) \gamma_{2}=q\left[(B-A)(C-A) p+C(3 A-2 B) s p^{-1 / 3}\right] \\
(2 B-A) \gamma_{3}=r\left[(B-A)(C-A) p+B(3 A-2 C) s p^{-1 / 3}\right]
\end{gathered}
$$

where

$$
s^{3}=\frac{4(2 B-A)^{2}(2 C-A)^{2} \Gamma^{2}}{9 A^{3}(2 B+2 C-3 A) \cdot(3 A-2 B)(3 A-2 C)}<0
$$

Chaplygin has also shown the equations of the meridian of the surface of revolution

$$
\begin{aligned}
& (2 B-A)(2 C-A)\left(p^{2}+q^{2}+r^{2}\right)=4(B-A)(C-A) p^{2}+12 s(2 A-B-C) A p^{1 / 3} \\
& (2 B-A)(2 C-A)\left(p \gamma_{1}-q \gamma_{2}-r \gamma_{3}\right)=6.4 s(B-A)(C-A) p^{3 / 3}+ \\
& +3 s^{2}(3 A-2 B)(3 A-2 C) A p^{1 / 3}
\end{aligned}
$$

We shall write the solution of Chaplygin in a form convenient for the subsequent analysis.

Satisfying (2.1) we set

$$
B=3_{16} 1(3 c+1)!c, \quad C=3_{16} 1(3+c)
$$

and by (2.5) we have

$$
\begin{equation*}
{ }_{1}^{1} 3(\sqrt{73}-\dot{8})<c<1 / 5 \tag{2.3}
\end{equation*}
$$

We shall divide the components of the angular velocity by $(-18 s)^{\frac{3}{4}}$, introduce the unit vector $\nu_{1}=\gamma_{1} / \Gamma$ and rewrite the solution of Chaplygin as follows:

$$
\begin{align*}
& \left.p=\sigma \sqrt{\sigma}, \quad q=q_{*} \sqrt{\sigma\left(\sigma^{* 2}-\sigma^{2}\right)}, \quad r=r_{*} \sqrt{\sigma\left(\sigma_{*}^{2}-\sigma^{2}\right.}\right) \tag{2.4}\\
& q_{*}=2 c\left(\frac{2(7-3 c)}{3(3 \div c)\left(1-c^{2}\right)}\right)^{1 / 2}, \quad r_{*}=2\left(\frac{.2(3-7 c)}{3(1+3 c)\left(1-c^{2}\right)}\right)^{1 / 2}
\end{align*}
$$

$$
\begin{gather*}
v_{1}=\frac{(7-3 c)(3-7 c) \sqrt{3}}{2(1-c) \sqrt{(5-c)(1-5 c)}} \sigma\left(\frac{9-34 c+9 c^{2}}{(7-3 c)(3-7 c)}-\sigma^{2}\right) \\
v_{2}=\frac{(3-7 c)}{4(1-c)}\left(2 \frac{(3+c)(7-3 c)^{3}}{(5-c)(1-5 c)\left(1-c^{2}\right)}\left(\sigma_{*}^{2}-\sigma^{2}\right)\right)^{1 / 2}\left(\frac{3+c}{7-3 c} \sigma_{*}^{2}-\sigma^{2}\right) \tag{2.5}\\
v_{3}=-\frac{7-3 c}{4(1-c)}\left(\frac{(1+3 c)(3-7 c)^{3}}{2(5-c)(1-5 c)\left(1-c^{2}\right)}\left(\sigma_{*}^{2}-\sigma^{2}\right)\right)^{1 / 2}\left(\frac{1+3 c}{3-7 c} \sigma^{* 2}+\sigma^{2}\right) \\
\omega^{2}=\omega_{*}^{2} \sigma\left\{\begin{array}{l}
\left\{\frac{3-14 c+3 c^{2}}{(7-3 c)(3-7 c)}-\sigma^{*}\right\}, \quad \omega_{*}^{2}=\frac{(3-7 c)(7-3 c)}{(3+c)(1+3 c)} \\
\omega_{\zeta}=\omega^{*} \sqrt{\sigma}\left(\sigma^{2}-\sigma_{*}^{2} \sigma^{* 2}\right), \quad \omega^{*}=\frac{(7-3 c)(3-7 c)}{2(1-c) \sqrt{3(5-c)(1-5 c)}} \\
\sigma=\left(\frac{1-5 c}{3-7 c}\right)^{1 / 2}, \quad \sigma^{*}=\left(\frac{5-c}{7-3 c}\right)^{1 / 2}
\end{array}\right.
\end{gather*}
$$

The constants marked by asterisks are positive. The variable σ is determined from Equation

$$
\begin{equation*}
\frac{d \sigma}{d \tau}=\sqrt{\sigma\left(\sigma_{*}^{2}-\sigma^{2}\right)\left(\sigma^{* 2}-\sigma^{2}\right)}, \quad\left(\varepsilon=\frac{1}{3}(-18 s)^{3 / 4} \omega_{*} t\right) \tag{2.8}
\end{equation*}
$$

The radial component of the angular velocity is determined from (2.6)

$$
\begin{equation*}
\omega_{\rho}-\sqrt{\omega^{2}-\omega_{\zeta}{ }^{2}}=\omega^{*} \sqrt{\sigma\left(\sigma_{3}^{2}+\sigma^{2}\right)\left(\sigma_{4}^{2}-\sigma^{2}\right)} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma_{3}{ }^{2}=\frac{4(1-c) R(c)+\left(3-22 c+3 c^{2}\right)(1-5 c)(5-c)}{(3+c)(1+3 c)(7-3 c)(3-7 c)} \\
& \sigma_{4}{ }^{2}=\frac{4(1-c) R(c)-\left(3-22 c+3 c^{2}\right)(1-5 c)(5-c)}{(3+c)(1+3 c)(7-3 c)(3-7 c)} \tag{2:10}\\
& R(c)=\sqrt{2(1-5 c)(5-c)\left(9-42 c+34 c^{2}-42 c^{3}+9 c^{4}\right)}
\end{align*}
$$

Substituting $(2.4),(2.5),(2.9)$ into (1.6) we have

$$
\begin{equation*}
\frac{d \alpha}{d \sigma}=N \frac{\left(\sigma_{1}{ }^{2}-\sigma^{2}\right)\left(\sigma_{2}{ }^{2}-\sigma^{2}\right)}{\left(\sigma_{3}{ }^{2}+\sigma^{2}\right)\left(\sigma_{4}{ }^{2}-\sigma^{2}\right) \sqrt{\left(\sigma^{* 2}-\sigma^{2}\right)\left(\sigma_{*}{ }^{2}-\sigma^{2}\right)}} \tag{2.11}
\end{equation*}
$$

Here

$$
\begin{gather*}
N=2 \sigma_{*} \sigma^{*} \sqrt{3(3+c)(1+3 c)} \\
\sigma_{1}^{2}=\frac{9-34 c+9 c^{2}+2(1-c) \sqrt{9-34 c+9 c^{2}}}{(7-3 c)(3-7 c)} \\
\sigma_{2}{ }^{2}=\frac{9-34 c+9 c^{2}-2(1-c) \sqrt{9-34 c+9 c^{2}}}{(7-3 c)(3-7 c)}
\end{gather*}
$$

Let us write down the inequalities resulting from (2.3), (2.7), (2.12) and (2.10)

$$
\begin{equation*}
\sigma_{*}<\sigma^{*}<1, \quad 0<\sigma_{2}<\sigma_{*}<\sigma_{1}, \quad \sigma_{*}<\sigma_{4} \tag{2.13}
\end{equation*}
$$

The quantities (2.4) are real, therefore when the body moves the variable σ is bounded

$$
\begin{equation*}
0 \leqslant \sigma \leqslant \sigma_{*} \tag{2.14}
\end{equation*}
$$

and, as shown by (2,8), it passes from one boundary to another in a finite interval of time. The second derivative $d^{2} \sigma / d t^{2}$ at $c=0$ and $a=c_{*}$ does not vanish, consequently the variable oannot remain conatant at $0=0$ or at $0=0 *$. Thus, without any loss of generality we can assume that initially $\sigma=0$.
3. The curve (2.4) somnected wth the body constitutes at the same time the moving hodograph of the angular velocity and also the curve of intersection of the cylinarical surfacea

$$
\begin{align*}
& 3 / 8 c^{-1}(3+c)\left(1-c^{2}\right) q^{2}=(5-c) p^{7 / 2}-(7-3 c) p^{2} \tag{3.1}\\
& 3 / 8(1+3 c)\left(1-c^{2}\right) p^{2}=(1-5 c) p^{1 / 3}-(3-7 c) p^{2}
\end{align*}
$$

The directrices of these cylinders are symmetric with respect to the coordinate axes. An example of their forms is shown in Fig. I. To simplify the graph

Fig. 1 in Fig. 2 there are shown only two loops of the moving hodograph. The remaining two are symmetric to those shown about the plane of symmetry por.

Let us investigate the motion of the point N which is the tip of the vector (on the curve (3.1).

From $(2,13)$ and (2.14) follows that the sign of $\sqrt{\sigma^{*}-\sigma^{2}}$ does not change and wisi be assumed positive. Then; from (2.14) and (2.8) follows that near the initial values of o the radicals $\sqrt{\theta}$ and $\sqrt{a_{*}^{2}-\theta^{\prime \prime}}$ must have the same sign, which again will be assumed positive. When * Increases from the initial value $0=0$ to $\sigma=0_{0}$ the point moves
 changes sign, the component . and the derivative do/dT become negative. The variable - decreases from 0_{*} to 0 , the point N moves from N_{*} through $N^{\prime \prime}$ to 0 , where the radical To changes sign, after which p and o become negative and r positive, and the tip of the vector w in the secand half-pertod moves on the second loop as shown in Mg. 2 .
4. Let us consider the

F18. 2 curve (2.6) and (2.9) in the $\omega_{\mathrm{g}} \mathrm{om}_{\mathrm{y}}$ plane. We have

$$
\begin{equation*}
\frac{d \omega_{\zeta}}{d \omega_{p}}=-\frac{\left(\sigma_{*}{ }^{2} \sigma^{33}-5 \sigma^{2}\right) \sqrt{\left(\sigma_{3}^{2}+\sigma^{2}\right)\left(\sigma_{3}^{2}-\sigma^{2}\right)}}{\sigma_{3}{ }^{2} \sigma_{4}^{2}-3\left(\sigma_{3}^{2}-\sigma_{4}{ }^{2}\right) \sigma^{2}-5 \sigma^{4}}=\tan v(\omega) \tag{4.1}
\end{equation*}
$$

The curve begins from the point 0 at the angle $0(0)<0$, and at $0=0 * \sigma / 5$ It has a horizontal tangent at $\sigma=\sigma_{*} a^{*}<\sigma_{*}$ it intersects the oujo axis at the angle $\theta=0\left(\sigma_{*} \sigma^{*}\right)>0$. Let us note that $\omega_{\zeta}\left(\sigma_{*}\right)>0$ and $\hat{v}^{*}\left(\sigma_{*}\right)<0$.

At certain value of $\%$ say $\% \omega^{*}$, the denominator of the right berm of (4.1) vanishes and the tangent to the curve (2.7) and (2.9) is vertical. From the inequalities $0\left(\sigma_{*} \sigma^{*}\right)>0$ and $\theta_{0}\left(\sigma_{*}\right)<0$ foiliows

$$
\begin{equation*}
\sigma_{*} \sigma^{*}<\omega_{* *}<\sigma_{*} \tag{4.2}
\end{equation*}
$$

Fig. 3 shows this part if the meridian (2.7) and (2.9) of the surface of revolution which corresponds to the increment of the variable a from the initial zero value to the value σ^{*}.

The symmetric image of this. line about the point 0 is the otner part

Fif. 3

FIS. 4
of the meridian which corresponds to the second half period of the motion of the body.

From (2.9), (2.11) we obtain the projection of the stationary hodograph on the horizontal plane (Fig. l_{r}). We have

$$
\begin{equation*}
\frac{\omega_{c} d x}{d \sigma_{F}}=\frac{\sigma\left(\sigma_{1}{ }^{2}-\sigma^{2}\right)\left(\sigma_{2}{ }^{2}-\sigma^{2}\right)}{\left[\sigma_{3}^{2} \sigma_{4}^{2}-3\left(\sigma_{3}^{2}-\sigma_{4}{ }^{2}\right) \sigma^{2}-5 \sigma^{2}\right] \sqrt{\left(\sigma^{* 2}-\sigma^{2}\right)\left(\sigma_{*}^{2}-\sigma^{2}\right)}} \tag{4.3}
\end{equation*}
$$

Besides

$$
\begin{equation*}
\sigma_{2}{ }^{2} \sigma^{4}-\sigma_{2}^{2}=\frac{2(1-c)(5-c)(1-5 c)}{(7-3 c)(3-7 c)\left[2(1-c)-\sqrt{9-34 c}-\frac{1}{\left.c^{2}\right]}\right.}>0 \tag{4.4}
\end{equation*}
$$

and from (4.4)

$$
\sigma_{2}<\sigma_{* *}
$$

Fig. 5 shows one loop of the stationary hodograph, obtained by placing the projection shown on Fig. 4 on the surface of revolution with its meridian

Fig. 5
as shown in Fig.3. Fig. 5 a shows what happens at the initial value $\sigma=0$. At this instant, by $(2.5) \quad v_{1}=0$, consequently the op-axis of the body containing the center of gravity is horizontal. When 0 increases from 0 to σ_{*} the moving hodograph passes to the position shown in Fig.5b. In this position $v_{3}=0$, and the or-axis becomes horizontal. When o decreases from σ_{*} to 0 the moving hodograph passes to the position shown in Fig. 5 c . The $O P^{*}$ axis is again horizontal.

In the following motion of the body the point of tangency of the curves shown in Fig. 5 moves along these curves in the opposite direction. From the position shown in Fig. 5 c through the position 5 b to the position 5 a . The tip of the vector w describes curves, both in the body and in the space
which are symmetric to those shown in Fig. 5 about the fixed point 0 . At the end of this stage of the motion the position 5 a is reached again after which the process repeats itself.

BIBLIOGRAPHY

1. Zhukoskil, N.E., 0 znachenil geometricheskogo istolkovanila v teoreti= cheskoi mekhanike (on the Importance of the Geometrical Interpretation in Theoretical Mechanics). Collected works, Vol.7, Gostekhizdat,1950.
2. Poinsot, L., Théorie nouvelle de la rotation des corps. J.math.pures et appl., Vol.18, 1 ser., 1852.
3. Darboux, M.G., Sur le mouvement d'un corps pesant de révolution, fixé par un point de son axe. J.math.pures et appl., Vol.1, 4 ser., 1885.
4. Chaplygin, S.A., Novoe chastnoe reshenie zadacht o vrashchenii tiazhelogo tverdogo tela vokrug nepodvizhnoi tochki (A New Particular Solution of the Problem of Rotation of a Heavy Rigid Body about a Fixed Point). Collected wcike, Vol.1, Gostekhizdat, 1948.
5. Kharlamov, P.V., Ob uravnenilakh dvizhenila tiazhelogo tverdogo tela, imeiushchego nepodivizhuiu tochku (On the equations of motion of a heavy rigid body with a fixed point). PMM Vol.27, № 4, 1963.
6. Zhukovskil, N, E., 0 dvizhenif tverdogo tela, imeiushchego polosti, napolnennye odnorodnoi kapel'noi zhidkost'iu (on the motion of a rigid body having cavities filled with a homogeneous 1iquid). Collected works, Vol.3, ONTI, 1936.
7. Kharlamova, E.I., O dvizheni1 tverdogo tela vokrug nepodvizhnoi tochki v tsentral'nom n'iutonovskom pole sil (On the motion of a rigid body about a fixed point in the cental Newtonian force field). Izv.sibirsk. otd. Akad. Nauk SSSR, № 6, 1959.
